Bookbot

Multi-objective evolutionary algorithms

Valoración del libro

2,0(1)Añadir reseña

Más información sobre el libro

Many real-world optimization problems consist of several conflicting objectives, the solutions of which is a set of trade-offs called the Pareto-optimal set. During the last decade, Evolutionary Algorithms (EAs) have been utilized to find an approximation of the Pareto-optimal set. However, the approximation set must possess solutions with high convergence towards the Pareto-optimal set and hold a good diversity in order to demonstrate a good approximation. The subject of this thesis is to improve the existing Multi-Objective Evolutionary Algorithms (MOEAs) and to develop new techniques in order to achieve approximated sets with high convergence and diversity in low computational time.

Compra de libros

Multi-objective evolutionary algorithms, Sanaz Mostaghim

Idioma
Publicado en
2005
product-detail.submit-box.info.binding
(Tapa blanda)
Te avisaremos por correo electrónico en cuanto lo localicemos.

Métodos de pago

2,0
Más o menos
1 Valoraciones

Nos falta tu reseña aquí