Bookbot

Introduction to optimal estimation

Valoración del libro

4,0(1)Añadir reseña

Parámetros

  • 380 páginas
  • 14 horas de lectura

Más información sobre el libro

This book provides an introductory, yet comprehensive, treatment of both Wiener and Kalman filtering, along with a development of least-squares estimation, maximum likelihood estimation, and maximum a posteriori estimation based on discrete-time measurements. A good deal of emphasis is placed in the text on showing how these different approaches to estimation fit together to form a systematic development of optimal estimation. Included in the text is a chapter on nonlinear filtering, focusing on the extended Kalman filter (EKF) and a new measurement update that uses the Levenburg-Marquardt algorithm to obtain more accurate results in comparison to the EKF measurement update. Applications of nonlinear filtering are also considered, including the identification of nonlinear systems modeled by neural networks, FM demodulation, target tracking based on polar-coordinate measurements, and multiple target tracking.

Compra de libros

Introduction to optimal estimation, Edward W. Kamen

Idioma
Publicado en
1999
product-detail.submit-box.info.binding
(Tapa blanda)
Te avisaremos por correo electrónico en cuanto lo localicemos.

Métodos de pago

4,0
Muy bueno
1 Valoraciones

Nos falta tu reseña aquí