Bookbot

Additive number theory

Más información sobre el libro

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.

Publicación

Compra de libros

Additive number theory, Melvyn B. Nathanson

Idioma
Publicado en
1996
Te avisaremos por correo electrónico en cuanto lo localicemos.

Métodos de pago

Nadie lo ha calificado todavía.Añadir reseña