El Teniente Coronel Robert W. Schaefer es un oficial condecorado de las Fuerzas Especiales del Ejército de EE. UU. con una amplia experiencia en asuntos euroasiáticos. Sus veinticinco años de servicio lo han involucrado en numerosas operaciones globales, lo que lo califica de manera única para analizar conflictos complejos. La profunda comprensión de Schaefer sobre la contrainsurgencia y la lucha contra el terrorismo, particularmente en la región del Cáucaso, proviene de su participación de primera mano. Su carrera incluye la colaboración con fuerzas de élite en Europa del Este y los Bálticos, e incluso sirvió en el estado mayor de una brigada aerotransportada rusa.
The book provides an in-depth analysis of the rising terrorist and insurgent activities in Southern Russia, highlighting the failures of the Russian counter-terrorism strategy. Drawing on the author’s military expertise, it examines the underlying factors contributing to the surge in attacks over the past three years, offering insights into the complexities of insurgency and the effectiveness of current military responses.
Genetic algorithms are effective global optimization methods used to tackle complex real-life problems in science and technology. Despite their computational complexity, they can explore vast data sets and address challenging cases where objective functions are irregular and multimodal, and where extrema location information is inaccessible through other means. These algorithms belong to the class of iterative stochastic optimization strategies, generating and evaluating a set of admissible points, known as the random sample or population, during each step. Unlike Monte Carlo strategies that sample uniformly across the search domain, genetic algorithms adjust the probability distribution at each step. Drawing from biological mechanisms, they utilize processes such as genetic code mutation, crossover, and selection among individuals. These methods have been validated by solving multimodal problems in nature, evidenced by various species adapted to different ecological niches. They enhance the search process's efficiency compared to completely random approaches, maintaining the exploration capability of the entire admissible set, which is crucial for global optimization. Consequently, genetic algorithms represent a novel class of artificial intelligence methods that incorporate heuristics proven effective in other fields into the traditional framework of stochastic global search.