+1M libros, ¡a una página de distancia!
Bookbot

Pierre Deligne

    Cohomologie Etale
    Equations différentielles à points singuliers réguliers
    Commensurabilities among Lattices in PU (1,n)
    • The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n -variables. These are treated as an ( n +1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n +3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P = m . For n =1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points.This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU (1, n ).The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU (1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n -variables of the Kummer identities for n -1 involving quadratic and cubic changes of the variable.

      Commensurabilities among Lattices in PU (1,n)
    • Cohomologie Etale

      Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2

      • 316 páginas
      • 12 horas de lectura

      Ce rapport présente une démonstration simplifiée de la formule des traces pour l'endomorphisme de Frobenius, permettant d'alléger la lecture de SGA 5. Il inclut également des applications aux sommes trigonométriques, illustrant comment cette formule facilite leur étude avec des exemples concrets.

      Cohomologie Etale