Compra 10 libros por 10 € aquí!
Bookbot

David Hilbert

    23 de enero de 1862 – 14 de febrero de 1943
    Mathematische Annalen, Volume 45
    Mathematische Annalen; Volume 29
    Mathematische Annalen; Volume 44
    Mathematische Annalen; Volume 15
    Mathematische Annalen; Volume 6
    The Theory of Algebraic Number Fields
    • The Theory of Algebraic Number Fields

      • 388 páginas
      • 14 horas de lectura

      The narrative details the collaboration between mathematicians Hilbert and Minkowski on a significant report for the Deutsche Mathematiker-Vereinigung in 1893. While Minkowski focused on rational number theory, Hilbert tackled algebraic number theory, completing his work by 1896. After Minkowski withdrew due to slower progress, Hilbert's manuscript, meticulously prepared with his wife's assistance, was published. The final report surpassed expectations, presenting a cohesive and elegant integration of complex developments in the field, earning high praise from the mathematical community.

      The Theory of Algebraic Number Fields
    • Mathematische Annalen; Volume 6

      • 668 páginas
      • 24 horas de lectura

      This book is a collection of research papers published in the prestigious journal Mathematische Annalen. It features groundbreaking work by prominent mathematicians such as David Hilbert and Albert Einstein, spanning topics from geometry to number theory.

      Mathematische Annalen; Volume 6
    • Mathematische Annalen; Volume 15

      • 588 páginas
      • 21 horas de lectura

      Founded by celebrated mathematician Carl Neumann in 1868, Mathematische Annalen is one of the world's most prestigious mathematical journals. Featuring groundbreaking articles by luminaries like Albert Einstein, David Hilbert, and Félix Klein, this collection offers a window into the cutting-edge of mathematical research and exploration. A must-read for anyone passionate about mathematics.

      Mathematische Annalen; Volume 15
    • Mathematische Annalen; Volume 44

      • 610 páginas
      • 22 horas de lectura

      Mathematische Annalen is a seminal mathematics journal that has published many groundbreaking papers and provided a venue for the most important mathematical discoveries of the past century. This anthology contains some of the most important papers published in the journal and includes contributions from luminaries such as David Hilbert, Albert Einstein, and Felix Klein. With its rigorous analysis and groundbreaking insights, this book is an essential resource for anyone interested in the history and development of the most important mathematical ideas of the 20th century.

      Mathematische Annalen; Volume 44
    • Mathematische Annalen; Volume 29

      • 604 páginas
      • 22 horas de lectura

      Mathematische Annalen is a scientific journal dedicated to mathematics published by Springer-Verlag. This book is a compilation of articles published in Mathematische Annalen from the years 1869 to 1949, written by some of the most prominent mathematicians of the time, including Albert Einstein and David Hilbert. It is a must-read for anyone interested in the history of mathematics.

      Mathematische Annalen; Volume 29
    • Mathematische Annalen, Volume 45

      • 612 páginas
      • 22 horas de lectura

      Culturally significant, this work offers a faithful reproduction of an original artifact, preserving its authenticity with original copyright references and library stamps. It serves as a valuable resource for understanding the knowledge base of civilization, reflecting the historical context and importance of the material housed in major libraries worldwide.

      Mathematische Annalen, Volume 45
    • Mathematische Annalen, Volume 48

      • 640 páginas
      • 23 horas de lectura

      Selected for its cultural significance, this work preserves the integrity of the original artifact, including copyright references and library stamps. It serves as a vital component of the knowledge base of civilization, offering readers a glimpse into historical context and scholarly importance. The reproduction aims to maintain authenticity, making it a valuable resource for those interested in the preservation of cultural heritage.

      Mathematische Annalen, Volume 48
    • The Foundation of Geometry

      • 166 páginas
      • 6 horas de lectura

      This book presents a systematic approach to geometry by establishing a simple and complete set of independent axioms. It aims to logically derive key geometrical theorems, highlighting the significance of various axiom groups and the implications of each individual axiom. Through this method, the text seeks to clarify the foundational principles that underpin geometric concepts, making it a valuable resource for understanding the logical structure of geometry.

      The Foundation of Geometry
    • The Foundations of Geometry

      • 98 páginas
      • 4 horas de lectura

      Focusing on the contributions of David Hilbert, this work highlights his significant influence on mathematics in the 19th and early 20th centuries. Born in Prussia, Hilbert is celebrated for his groundbreaking ideas in invariant theory and the axiomatization of geometry, as well as for formulating the theory of Hilbert spaces, which became foundational in functional analysis. The book is republished with a new introductory biography that provides context to his remarkable achievements.

      The Foundations of Geometry
    • Grundlagen der Mathematik I

      • 500 páginas
      • 18 horas de lectura

      Die Untersuchungen zur Grundlagen der Mathematik, die seit 1917 in Zusammenarbeit mit P. Bernays und W. Ackermann durchgeführt werden, zielen darauf ab, die Widerspruchsfreiheit der mathematischen Methoden zu gewährleisten. Der erste Teil des Lehrgangs von Bernays präsentiert die aktuellen Ergebnisse der Theorie und zeigt auf, wie diese die zukünftige Forschung in der Beweistheorie beeinflussen. Hilbert betont, dass die Missverständnisse bezüglich Gödel's Ergebnissen irreführend sind und dass eine präzisere Betrachtung notwendig ist, um die Widerspruchsfreiheit zu erreichen.

      Grundlagen der Mathematik I