Richard Wesley Hamming fue un matemático cuyo trabajo tuvo profundas implicaciones en la informática y las telecomunicaciones. Su investigación introdujo conceptos fundamentales como el código de Hamming y la distancia de Hamming, que se volvieron cruciales para la detección y corrección de errores en datos digitales. La filosofía de Hamming sobre la computación enfatizó la búsqueda de conocimiento en lugar de meros resultados numéricos. Su legado continúa dando forma al panorama digital.
Highly effective thinking is an art that engineers and scientists can be taught to develop. By presenting actual experiences and analyzing them as they are described, the author conveys the developmental thought processes employed and shows a style of thinking that leads to successful results is something that can be learned
For this inexpensive paperback edition of a groundbreaking classic, the author has extensively rearranged, rewritten, and enlarged the material. Book is unique in its emphasis on the frequency approach and its use in the solution of problems. Contents include: Fundamentals and Algorithms; Polynomial Approximation — Classical Theory; Fourier Approximation — Modern Theory; and Exponential Approximation.
Digital signals occur in an increasing number of in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the strongest need for an understanding of digital filtering do not have a strong background in mathematics or electrical engineering. Thus, this book assumes only a knowledge of calculus and a smattering of statistics (reviewed in the text). Adopting the simplest, most direct mathematical tools, the author concentrates on linear signal processing; the main exceptions are the examination of round-off effects and a brief mention of Kalman filters.This updated edition includes more material on the z-transform as well as additional examples and exercises for further reinforcement of each chapter's content. The result is an accessible, highly useful resource for the broad range of people working in the field of digital signal processing.