Compra 10 libros por 10 € aquí!
Bookbot

David H. Hand

    David J. Hand es un autor cuya obra profundiza en las matemáticas y la estadística, revelando la sorprendente ubicuidad e impacto de la improbabilidad en nuestras vidas. Su enfoque es analítico y sistemático, explorando cómo los eventos aparentemente increíbles a menudo siguen reglas simples, aunque complejas. El estilo de escritura de Hand traduce intrincados conceptos estadísticos en narrativas atractivas, permitiendo a los lectores apreciar los patrones matemáticos que dan forma a nuestro mundo. Su escritura nos desafía a considerar la probabilidad y el azar, demostrando cómo la improbabilidad se vuelve inevitable dentro de sistemas complejos.

    Advances in intelligent data analysis
    • Advances in intelligent data analysis

      • 538 páginas
      • 19 horas de lectura

      Inhaltsverzeichnis Learning covers a range of methodologies and techniques for intelligent data analysis, including statistical measures and linguistic model design. It discusses a "Top-Down and Prune" induction scheme for decision committees and explores mining clusters with association rules. The text delves into evolutionary computation for identifying strongly correlated variables in high-dimensional time-series data and examines biases in decision tree pruning strategies. Feature selection and retrospective pruning in hierarchical clustering are also addressed, alongside the discriminative power of input features in fuzzy models. Visualization techniques include monitoring human information processing through EEG analysis and knowledge-based visualization for spatial data mining. It introduces probabilistic topic maps for navigating large text collections and employs 3D visualizations for multidimensional data. Classification and clustering topics feature a decision tree algorithm for ordinal classification, Bayesian clustering for dynamic discovery, and nonparametric linear discriminant analysis. The text discusses supervised classification challenges and temporal pattern generation using hidden Markov models. Integration strategies include adjusted estimation for classifier combinations and reasoning about input-output modeling of dynamic systems. Applications range from intrusion detection and dairy industry pre

      Advances in intelligent data analysis