Compra 10 libros por 10 € aquí!
Bookbot

Lie Algebras of Bounded Operators

Parámetros

  • 232 páginas
  • 9 horas de lectura

Más información sobre el libro

In proofs from the theory of finite-dimensional Lie algebras, the Jordan canonical structure of linear maps on finite-dimensional vector spaces plays a crucial role. However, classical results suggest the use of infinite-dimensional vector spaces as well. For instance, the classical Lie Theorem states that all finite-dimensional irreducible representations of solvable Lie algebras are one-dimensional, indicating that these algebras cannot be classified or distinguished from one another. This highlights the necessity for infinite-dimensional vector spaces. Yet, the structure of linear maps in such spaces is not well understood, as concepts like the Jordan canonical structure of matrices do not apply. Fortunately, a significant class of linear maps on vector spaces of arbitrary dimension exhibits similarities to matrices: the bounded linear operators on complex Banach spaces. Certain bounded operators, including Dunford spectral, Foia§ decomposable, scalar generalized, and Colojoara spectral generalized operators, possess a form of Jordan decomposition theorem. This work aims to present the key results achieved through the study of bounded operators in relation to Lie algebras.

Publicación

Compra de libros

Lie Algebras of Bounded Operators, Daniel Beltit a.

Idioma
Publicado en
2012
product-detail.submit-box.info.binding
(Tapa blanda)
Te avisaremos por correo electrónico en cuanto lo localicemos.

Métodos de pago

Nadie lo ha calificado todavía.Añadir reseña