Bookbot

Extremum problems for eigenvalues of elliptic operators

Valoración del libro

5,0(1)Añadir reseña

Parámetros

  • 202 páginas
  • 8 horas de lectura

Más información sobre el libro

Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. We also consider the case of functions of eigenvalues. We investigate similar questions for other elliptic operators, such as the Schrödinger operator, non homogeneous membranes, or the bi-Laplacian, and we look at optimal composites and optimal insulation problems in terms of eigenvalues. Providing also a self-contained presentation of classical isoperimetric inequalities for eigenvalues and 30 open problems, this book will be useful for pure and applied mathematicians, particularly those interested in partial differential equations, the calculus of variations, differential geometry, or spectral theory.

Compra de libros

Extremum problems for eigenvalues of elliptic operators, Antoine Henrot

Idioma
Publicado en
2006
product-detail.submit-box.info.binding
(Tapa blanda)
Te avisaremos por correo electrónico en cuanto lo localicemos.

Métodos de pago

5,0
Excelente
1 Valoraciones

Nos falta tu reseña aquí