El libro está agotado actualmente

Más información sobre el libro
The thesis explores the optimal Bayesian filtering problem by focusing on Gaussian distributions, enabling the development of computationally efficient algorithms. It addresses three specific scenarios: filtering using only Gaussian distributions, employing Gaussian mixture filtering for handling strong nonlinearities, and utilizing Gaussian process filtering in data-driven contexts. For each scenario, the author derives effective algorithms and demonstrates their application to real-world challenges, highlighting the practical implications of these methods in various domains.
Compra de libros
Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications, Marco Huber
- Idioma
- Publicado en
- 2015
- product-detail.submit-box.info.binding
- (Tapa blanda)
Te avisaremos por correo electrónico en cuanto lo localicemos.
Métodos de pago
Nadie lo ha calificado todavía.